On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation.
نویسنده
چکیده
Analytical ultracentrifugation is one of the classical techniques for the study of protein interactions and protein self-association. Recent instrumental and computational developments have significantly enhanced this methodology. In this paper, new tools for the analysis of protein self-association by sedimentation velocity are developed, their statistical properties are examined, and considerations for optimal experimental design are discussed. A traditional strategy is the analysis of the isotherm of weight-average sedimentation coefficients s(w) as a function of protein concentration. From theoretical considerations, it is shown that integration of any differential sedimentation coefficient distribution c(s), ls-g(*)(s), or g(s(*)) can give a thermodynamically well-defined isotherm, as long as it provides a good model for the sedimentation profiles. To test this condition for the g(s(*)) distribution, a back-transform into the original data space is proposed. Deconvoluting diffusion in the sedimentation coefficient distribution c(s) can be advantageous to identify species that do not participate in the association. Because of the large number of scans that can be analyzed in the c(s) approach, its s(w) values are very precise and allow extension of the isotherm to very low concentrations. For all differential sedimentation coefficients, corrections are derived for the slowing of the sedimentation boundaries caused by radial dilution. As an alternative to the interpretation of the isotherm of the weight-average s value, direct global modeling of several sedimentation experiments with Lamm equation solutions was studied. For this purpose, a new software SEDPHAT is introduced, allowing the global analysis of several sedimentation velocity and equilibrium experiments. In this approach, information from the shape of the sedimentation profiles is exploited, which permits the identification of the association scheme and requires fewer experiments to precisely characterize the association. Further, under suitable conditions, fractions of incompetent material that are not part of the reversible equilibrium can be detected.
منابع مشابه
Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation.
This unit introduces the basic principles and practice of sedimentation velocity analytical ultracentrifugation for the study of reversible protein interactions, such as the characterization of self-association, heterogeneous association, multi-protein complexes, binding stoichiometry, and the determination of association constants. The analytical tools described include sedimentation coefficie...
متن کاملInsight into protein-protein interactions from analytical ultracentrifugation.
Analytical ultracentrifugation is a free solution technique with no supplementary immobilization, columns or membranes required, and can be used to study self-association and hetero-interactions, stoichiometry, reversibility and interaction strength across a very large dynamic range (dissociation constants from 10(-12) M to 10(-1) M). In the present paper, we review some of the advances that ha...
متن کاملShaptsr 5 Sedimentation equilibrium in the analytical ultracentrifuge
For many years analytical ultracentrifugation was the major source of information on the heterogeneity and molecular size of macromolecules. In the field of protein chemistry the question of solute heterogeneity is now usually addressed by gel electrophoretic and gel chromatographic techniques, and the molecular wetght is either calculated from the amino acid sequence or obtained by mass sPectr...
متن کاملProtein Science, in press Modern Analytical Ultracentrifugation In Protein Science - A Tutorial Review
Analytical ultracentrifugation (AU) is re-emerging as a versatile tool for the study of proteins. Monitoring the sedimentation of macromolecules in the centrifugal field allows their hydrodynamic and thermodynamic characterization in solution, without any interaction with any matrix or surface. The combination of new instrumentation and powerful computational software for data analysis has led ...
متن کاملModern analytical ultracentrifugation in protein science: a tutorial review.
Analytical ultracentrifugation (AU) is reemerging as a versatile tool for the study of proteins. Monitoring the sedimentation of macromolecules in the centrifugal field allows their hydrodynamic and thermodynamic characterization in solution, without interaction with any matrix or surface. The combination of new instrumentation and powerful computational software for data analysis has led to ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical biochemistry
دوره 320 1 شماره
صفحات -
تاریخ انتشار 2003